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Abstract
We examine the localized Andreev states formed at a triplet superconductor–ferromagnet–triplet
superconductor Josephson junction. These mid-gap states dominate the low-energy transport
through the junction, which shows a rich dependence upon the junction parameters. We
compare and contrast the characteristics of the Josephson current for a ferromagnetic moment
aligned parallel and perpendicular to the junction interface. We find that spin-polarized currents
are possible, as well as an unusual temperature dependence of the Josephson current.

(Some figures in this article are in colour only in the electronic version)

The construction of novel Josephson junctions using unconven-
tional superconductors or barriers has recently attracted much
interest [1–7]. An important aspect of these investigations
concerns the formation of mid-gap Andreev bound states,
which are localized at the junction barrier. Due to the
breakdown of translational invariance at the junction these
states typically differ considerably from the bulk quasiparticle
states, for example they can display additional pairing-
state symmetries or odd-frequency pairing [8, 9]. The key
experimental signature of the mid-gap Andreev states is the
resonant tunneling through them, which is responsible for the
low-temperature anomaly in the Josephson current observed in
unconventional junctions [1, 3].

In this paper we investigate an unconventional triplet
superconductor–ferromagnet–triplet superconductor (TFT)
Josephson junction, which is schematically illustrated in
figure 1. This junction geometry was first introduced in [7]. We
treat the insulating ferromagnetic barrier within the δ-function
approximation, which is reasonable if its width is much smaller
than the coherence length in the bulk superconductors [10].
Similarly, although the pairing amplitude should be suppressed
near to the barrier due to the proximity effect, the order
parameter recovers its bulk value on a length scale much
smaller than the decay length of the Andreev bound state so
we assume that the pairing amplitude is uniform within each
superconducting slab [10]. We do not expect our results to

be qualitatively altered by relaxing these commonly adopted
assumptions. We extend the results of [7] by comparing and
contrasting the effect of a ferromagnetic moment perpendicular
and parallel to the junction interface. We find that these
two cases display qualitatively different dependence upon the
junction parameters. Of particular note is the Josephson
current reversal with temperature when the magnetic moment
is perpendicular to the junction; for a magnetic moment
parallel to the junction interface, we find a spin-polarized
Josephson current when the d vectors of the left and right
superconductors are not aligned.

We assume that the barrier lies along the plane z = 0;
since the system is translationally invariant along the x and y
axes, the system is effectively a 1D problem. The TFT junction
is thus described by the Hamiltonian H = ∫

dz dz ′ H(z ′, z)
where the Hamiltonian density is defined as

H(z ′, z) =
∑

σ

ψ†
σ (z

′)δ(z ′ − z)

[

− h̄2

2m

∂2

∂z2
− μ+ U0(z)

]

× ψσ (z)+ 1
2�(z, z′)

∑

σ

{σe−iσθ jψ†
σ (z

′)ψ†
σ (z)+ H.c.}

+ M(z, z ′) ·
∑

α,β

ψ†
α(z

′)σ̂ αβψβ(z) (1)

where ψ†
σ (z) and ψσ (z) are respectively the fermionic creation

and annihilation operators for a particle with spin σ at z,
σ̂ are the Pauli matrices and �(z, z ′) = −�(z′, z) is the
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Figure 1. Schematic diagram of the 1D triplet
superconductor–ferromagnet–triplet superconductor (TFT)
Josephson junction studied in this paper.

pz-wave superconducting gap. The d vector of the triplet
superconductors is defined as d = (cos(θ j), sin(θ j), 0). The
subscript j refers to the side of the junction: for z < 0 we have
j = L, whereas for z > 0 we have j = R. Without loss of
generality, we take dL to be oriented along the x̂ axis (i.e. θL =
0) and the dR vector to lie in the spin xy plane (i.e. θR =
θ ). The charge scattering by the insulating ferromagnetic
junction is given by the term U0(z) = U0δ(z) on the first line
of (1). The ferromagnetic moment of the junction is defined
as M(z, z ′) = (M⊥ cos(α),M⊥ sin(α),M‖)δ(z)δ(z′) and the
magnetic scattering is described by the last term in (1).

The Hamiltonian (1) is diagonalized by the Bogoliubov–
de Gennes (BdG) unitary transformation:

ψ↑(z) =
∑

n

{un(z)an + vn(z)b
†
n +wn(z)bn + xn(z)a

†
n} (2a)

ψ↓(z) =
∑

n

{−un(z)bn + vn(z)a
†
n −wn(z)an + xn(z)b

†
n}.

(2b)

The sum runs over all the eigenstates of the junction. As we
are only interested in the localized Andreev states, we drop the
subscript n and search for an eigenstate with the wavefunction


 j =

⎛

⎜
⎜
⎝

u j(z)

v∗
j (z)

w j (z)

x∗
j (z)

⎞

⎟
⎟
⎠ = ec jκz

∑

γ=±
A j,γ

⎛

⎜
⎜
⎝

u j,γ

v∗
j,γ

w j,γ

x∗
j,γ

⎞

⎟
⎟
⎠ eγ ikF z (3)

where c j = +1(−1) for j = L(R), κ−1 is the decay length
of the Andreev state and the Fermi vector is defined as kF =√

2mμ/h̄. The elements of 
 j(z) are determined by solving
the BdG equations:

Eu(z) = [T + (U0 + M‖)δ(z)− μ]u(z)
− ie−iθ j� j∂zv(z)− e−iαM⊥δ(z)w(z) (4a)

Ev(z) = −[T + (U0 + M‖)δ(z)− μ]v(z)
− ieiθ j�∗

j∂zu(z)− eiαM⊥δ(z)x(z) (4b)

Ew(z) = [T + (U0 − M‖)δ(z)− μ]w(z)
− ieiθ j� j∂z x(z)− eiαM⊥δ(z)u(z) (4c)

Ex(z) = −[T + (U0 − M‖)δ(z)− μ]x(z)
− ie−iθ j� j∂zw(z)− e−iαM⊥δ(z)v(z) (4d)

where T = −h̄2∂2
z /2m, �L = �0 and �R = �0eiφ . The

wavefunctions 
 j (z) obey the boundary conditions


L(0
−) = 
R(0

+) (5a)

∂z
R(0
+)− ∂z
L(0

−) = 2m

h̄2

(
Q̂+ P̂
P̂† Q̂−

)


R(0
+) (5b)

where Q̂± = (U0 ± M‖)σ̂0 and P̂ = −M⊥(σ̂3 cos(α) −
iσ̂0 sin(α)).

We obtain two distinct solutions of the BdG equations,
with eigenvalues

Ea(b)

kF�0
= 1

2

√
D|√D A + B + (−)√D A − B| (6)

where

A = {(1 + 2g2 + g′2 + Z 2)+ (1 + g′2 + Z 2) cos(φ) cos(θ)

+ g2 cos(θ − 2α)[cos(θ)− cos(φ)]
− 2Zg′ cos(θ) sin(φ)} (7a)

B = 2 cos[(θ + φ)/2] cos[(θ − φ)/2] (7b)

D = [(1 + g2 + g′2 − Z 2)2 + 4Z 2]−1/2 (7c)

where g = mM⊥/h̄2kF, g′ = mM‖/h̄2kF and Z = mU0/h̄2kF.
For each solution there is a particle-like branch at −Ea,b and a
hole-like branch at Ea,b. The current IJ through these states is
given by the expression

IJ = − e

h̄

∑

i=a,b

∂Ei

∂φ
tanh

(
Ei

2kBT

)

. (8)

In general, the contribution to the Josephson current by states
outside the gap is negligible [3, 10].

In this paper we focus upon the case where only magnetic
scattering happens at the barrier, i.e. U0 = 0. We find
that the Andreev state energies have qualitatively different
φ dependence for the cases when the magnetization is
perpendicular and parallel to the z axis. This can be seen
in figure 2, where we plot the Andreev energies and IJ as a
function of the phase difference φ between the left and right
superconductors. We first consider the case when θ = 0
(i.e. dL = dR). For g 	= 0 and g′ = 0 the Andreev states are
degenerate when α = (2n−1)π/2 where n is an integer, i.e. the
ferromagnetic moment is perpendicular to the two d vectors.
The Andreev state energies then have the same form as near
a potential scattering barrier, Ea,b = kF�0

√
D cos(φ/2) [6].

The zero-energy level crossings at φ = (2n + 1)π result in
jump discontinuities in the current as a function of φ (see
figure 2(b)). For any other value of α the Andreev states are
non-degenerate, but there are level crossings at φ = 2nπ .
Furthermore, the zero-energy level crossings are replaced by
level touchings and hence the current is a continuous function
of φ. The situation for g = 0 and g′ 	= 0 is the same as
for a transverse magnetic moment with α = (2n − 1)π/2: as
the barrier moment is perpendicular to the two d vectors in
both these cases, we have the same form for the Andreev state
energies and hence also discontinuous jumps in IJ .

A finite value of θ significantly alters the structure of the
Andreev states. For g 	= 0 and g′ = 0 the level crossings of the
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Figure 2. (a) Andreev state energies and (b) IJ as a function of φ for T = 0, θ = 0, g′ = 0, g = 1 and several values of α. (c) Andreev state
energies and (d) IJ as a function of φ for T = 0, θ = 0.25π and various different barrier parameters. Note that g 	= 0 ⇒ g′ = 0 and vice
versa.

Figure 3. (a) IJ z as a function of φ for g = 0, g′ = 1 and several values of θ . (b) Temperature dependence of IJ for θ = 0 and different
values of the barrier parameters.

a and b states is removed, while the hole-like and particle-like
b states cross at φ = (2n − 1)π ± θ , as shown in figure 2(c).
Note also that the degeneracy of the states at α = (2n − 1)π/2
is lifted. If we assume that only the states with negative energy
are occupied at T = 0 (the so-called adiabatic approximation,
see [7]), the level crossing causes discontinuous jumps in IJ

as the current carried by the b states switches between the
particle- and hole-like channels, thus reversing the sign of the
current due to the b states. This is demonstrated in figure 2(d).
For g = 0 and g′ 	= 0, the effect of θ 	= 0 is quite different: the
degeneracy at θ = 0 is lifted by shifting one state by θ to the
left and the other state by θ to the right. The a and b states are
thus given by Ea(b) = kF�0

√
D cos((φ + (−)θ)/2). We note

that, for both g 	= 0, g′ = 0 and g = 0, g′ 	= 0 the Josephson

current is periodic with period π when θ = (2n − 1)π/2 (not
shown).

An important physical difference between the cases g 	= 0,
g′ = 0 and g = 0, g′ 	= 0 is that in the latter case the
spin in the z direction is a good quantum number, whereas
in the former the barrier induces mixing between the different
spin components. When g = 0, therefore, the Andreev states
possess well-defined spin quantum numbers: σ = ↑ for state a
and σ = ↓ for state b. This has the interesting implication that
the transport through the mid-gap states can be spin-polarized.
Without a potential term U0, this is only possible when θ 	=
2nπ as here the two Andreev states are non-degenerate because
the non-zero θ creates a different phase gradient in the two spin
channels [6, 11, 12]. In figure 3(a) we plot the spin projection
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of the current along the z axis IJ z , where IJ z is defined:

IJ z = − 1

2e
(IJ↑ − IJ↓) (9)

and IJσ is the spin-σ component of the current. We observe
discontinuous reversals of the spin current occurring at the
zero crossings of the Andreev bands: the current jumps in
figure 2(d) therefore also correspond to changes in the spin
polarization. It is interesting to note that, when U0 = 0,
the sign of M‖ is of no importance in determining the spin
current. Because the spin states are mixed by the presence of
a transverse component of the magnetic moment, the effect of
g 	= 0 on the spin polarization of the current is a considerably
more difficult problem which will be addressed elsewhere.

The splitting of the Andreev state energies by the
transverse magnetic moment can result in an unconventional
temperature dependence of IJ , i.e. a reversal of the current
as temperature is increased. Assuming a BCS temperature
dependence of�0, we plot IJ in figure 3(b) for fixed φ = 0.5π
and θ = 0. To understand the origin of this effect, we must
consider the change in the populations of the Andreev states
with increasing T . At any T 	= 0 the positive-energy Andreev
states have a non-zero population, although the occupancy of
the higher-energy |Ea| state is always lower than the occupancy
of the |Eb| state. As the temperature is increased the reduction
in the current due to the a states (I a

J ) is therefore less than
that due to the b states (I b

J ). Assuming that |I b
J | > |I a

J | at
T = 0 and the sign of ∂Ea/∂φ is opposite to ∂Eb/∂φ, we
find that, above some critical temperature, |I b

J | < |I a
J | and the

current reverses. Because the φ dependence of the Andreev
states is crucial for the temperature-dependent reversal of IJ ,
this effect depends sensitively upon the barrier parameters.
In particular, the Andreev states converge together as α →
(2n − 1)π/2 (see figure 2(a)) and so the sign change only
occurs for α sufficiently close to nπ and does not occur at
all for g = 0, g′ 	= 0. Furthermore, for any fixed φ the
sign change only occurs for sufficiently large g. Recently

a similar temperature-dependent current reversal for a singlet
superconductor–ferromagnet–singlet superconductor has been
reported [13].

To conclude, we have investigated an unconventional
TFT Josephson junction in which IJ displays a complicated
dependence upon the orientations of the magnetic moment and
dL ,R . A temperature-dependent reversal of IJ is predicted, as
well as the possibility of a spin-polarized current. These results
are identifying signatures of the formation of localized mid-gap
Andreev states at the junction barrier.
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